Lower Leg and Ankle Injuries

Jon DeBord, PT, MS, ATC, SCS

Rehab Summit 2008

Ankle Injuries

- Most common injury in sports
 - 38-45% of all sport-related injuries
 - 86% are sprains
- Mechanism
 - Forceful inversion with plantarflexion
 - Eversion
 - Hyper-plantarflexion

Ankle Anatomy

- Bones
 - Tibia
 - Fibula
- Tibio-Fibular Syndesmosis
- Lateral Ligaments
 - Anterior talo-fibular
 - Calcaneo-fibular
 - Posterior talo-fibular
- Medial Ligament
 - Deltoid Ligament
Ankle Sprains

- Inversion Ankle Sprain
- Eversion Ankle Sprain
- Syndesmosis Injury "High Ankle Sprain"

Ankle Sprains

- Grade I
 - Mild Sprain – Mild tearing of ligament
 - Mild point tenderness
 - Little or no swelling
 - Little or no limitation in motion
 - Tendency to recurrence
 - Little or no disability
 - Quick return to play

Ankle Sprains

- Grade II
 - Moderate Sprain – Partial tearing of ligament
 - Moderate point tenderness
 - Moderate Swelling
 - Decreased ROM
 - Local Bruising
 - Persistent Instability with high recurrence
 - Return to play average 7-10 days
Ankle Sprains

- Grade III
 - Severe Sprain – Complete rupture of ligament
 - Severe pain and disability
 - Severely limited ROM
 - Possible deformity
 - Severe swelling
 - Chronic instability
 - Sometimes season-ending

Inversion Ankle Sprain

- Most common
- Mechanism
 - Inversion or varus tilt
 - Forced plantarflexion
- Symptoms
 - Pain over lateral malleolus
 - Inability to bear weight
- Signs
 - Swelling laterally
 - Bruising laterally or into foot
 - Tenderness over lateral malleolus

Inversion Ankle Sprain

- Treatment
 - Immediately – R.I.C.E.
 - Refer to physician
 - Weight bearing vs. NWB
- Rehabilitation
 - Decrease swelling/pain
 - Increase ROM/Strength
 - Restore proprioception
- Return to play
 - When able to perform all agility needed for specific sport
 - Bracing/Taping
Eversion Ankle Sprain

- Mechanism
 - Eversion or valgus tilt
 - Forced external rotation
- Symptoms
 - Pain on inside of ankle
- Signs
 - Tenderness anterior lower leg and medially
 - Swelling medially

- Relatively rare
- Usually involves syndesmosis injury
- Occasionally involves fibula fracture

Treatment
- Protected mobilization
- Cast immobilization

Rehabilitation
- Decrease swelling/pain
- Increase strength/ROM

Return to play
- When able to perform all agility needed for specific sport

Syndesmosis Injury

- High Ankle Sprain
- Usually associated with fracture
- Mechanism
 - Athlete stops and is pushed back on planted foot

- Signs/Symptoms
 - Tenderness over distal tibiofibular ligaments
 - Tenderness over Deltoid ligament
 - Pain with squeeze at mid-calf
- Treatment – Depends on X-Rays / Laxity Testing
 - Instability
 - No instability
Syndesmosis Injury

- **No Instability**
 - Weight bearing as tolerated
 - Elastic bandage or splint
 - Rehab similar to inversion sprain

- **Instability**
 - Immobilization for 6 weeks
 - Follow-up X-Rays to determine if syndesmosis is healing
 - If not – surgical placement of screw

Evaluation/Assessment

- **Figure of Eight**
 - Esterson 1979
 - Anterior Ankle
 - Inferior to Malleoli
 - Proximal to Base of 5th MT
 - Proximal to Tubercle of the Navicular
 - Tatro-Adams et al
 - Excellent Reliability
 - Petersen et al
 - Highly correlated with water volumetry

Intervention

- **High Voltage Pulsed Current**
 - Burr and colleagues
 - Injury Potential
 - Peaks + at 48 hours, then declines over next several days
 - Voight
 - Literature review
 - Cathodal stimulation for control of histamine release
 - Anodal stimulation for control of hematoma formation
 - Bourguignon and Bourguignon
 - Examined HVPC’s effect on DNA and protein synthesis
 - Maximum activity with cathodal HVPC at 100 pps
 - Taylor et al
 - Examined HVPC’s effect on effusion in hamster cheeks
 - Found less “leakage” in cheeks treated with cathodal HVPC at 50% and 90% Visible Muscle Threshold
Intervention

• High-Voltage Pulsed Current
 – 2 Electrodes
 – Negative polarity
 – 100pps
 – Sub-muscular contraction
 – 20 minutes

Intervention

• Ankle Disk Training
 – McGuine and colleagues
 • Increased postural sway strongly predictive of ankle sprain
 – Wester et al
 • 12-week training program
 • Fewer complaints of re-injury and chronic instability
 – Matsusaka and others
 • Added tactile input
 • Control Group: normal balance at 8 weeks
 • Taped Group: normal balance at 6 weeks

Intervention

• Ankle Disk Training
 – Initiated Day 2 post-injury
 – Progressed as tolerated
 • Bilateral stance
 • Bilateral support with toes
 • Unilateral support
 • Ball height
Intervention

• Perturbation Training
 – Bilateral stance
 – Bilateral support with toes
 – Unilateral stance
 – Unilateral stance on compliant surface

Ankle Bracing

• AirCast
• Positives
 – Provides compression and immobilization
 – Good for immediately post-injury
• Negatives
 – Compression not uniform
 – Bulky – compliance
 – Does not allow normal ankle ROM/movement

Ankle Bracing

• ASO Ankle Brace
• Positives
 – Lace-up/figure-8 straps
 – Good compression
 – Lightweight
 – Fits in all shoes
• Negatives
 – Needs to be replaced annually
Lower Leg Anatomy

- **Bones**
 - Tibia
 - Fibula
- **Muscles**
 - Tib. Anterior/Posterior
 - Toe Extensors
 - Gastrocnemius/Soleus
 - Toe Flexors
- **Tendons**
- **Ligaments/Pseudo-ligaments**

Lower Leg Injuries

- **Contusions**
 - Compartment Syndromes
- **Achilles Tendon Injuries**
 - Tendonitis
 - Rupture
- **Medial Tibial Stress Syndrome**
- **Fractures**
 - Stress Fractures
 - Traumatic Fractures
- **Nerve Injuries**

Contusions

- Highly exposed to direct trauma
- Most often over the anterior leg (shin)
- Abrasions and Lacerations
- Must rule-out bone injury

- Treat with R.I.C.E.
- Complications:
 - Compartment Syndrome
 - Peroneal Nerve Damage

Contusions

- Highly exposed to direct trauma
- Most often over the anterior leg (shin)
- Abrasions and Lacerations
- Must rule-out bone injury

- Treat with R.I.C.E.
- Complications:
 - Compartment Syndrome
 - Peroneal Nerve Damage
Compartment Syndrome

- Caused by swelling within one of the 4 compartments
- Usually due to trauma
- Most commonly anterior compartment
- Increases pressure on vascular structures and nerves

Compartment Syndrome

- Symptoms
 - History of trauma
 - Throbbing/aching pain
 - Red, distended skin
 - Increased tissue temp.
 - Foot Drop
 - Pain with passive motion

- Treatment
 - R.I.C.E.
 - Immediate referral to physician
 - May require surgery to release pressure

Exertional Compartment Syndrome

- Symptoms similar to Compartment Syndrome, but exercises induced
- Symptoms usually bilateral
- Relief of pain after exercises is stopped

- Treatment
 - R.I.C.E.
 - Referral to physician
 - Surgery is likely
Achilles Tendon Injuries

- Lower leg is site of origin for muscles responsible for foot and ankle power
- Athletic participation requires explosive and repetitive motions
- Strains may occur anywhere along the muscle or tendon
- Usually the result of violent contraction, overstretches, or continued overuse

Achilles Tendon Injuries

- Acute injury to muscle/tendon
- Most common site is the calf
- Tendency to become chronic
- Treatment:
 - R.I.C.E.
 - Slow/Gradual return to activity

Achilles Tendonitis

- Common among distance runners
- Thickening of surrounding tissues
- Tenderness on palpation
- Stiffness/Pain with activity
Achilles Tendonitis

• Symptoms
 – Generalized pain/stiffness around tendon
 – Uphill running is worse
 – Swelling
 – Decreased ankle ROM
 – Tendon may feel warm
 – Crepitus

Achilles Tendonitis

• Treatment
 – R.I.C.E
 – Cho-Pat Strap
 – Proper shoes
 – Orthotics
 – Physical Therapy
 – Stretching
 – Strengthening

Achilles Tendon Stretching

Gastroc Stretch (knee straight)

Soleus Stretch (knee flexed)
Achilles Tendon Rupture

- Atraumatic injury
- Relatively rare
- Typically in men age 30-40
- Causes
 - Decreased tissue blood supply
 - Anatomic limb alignment
 - Excessive or uncoordinated muscle contraction
 - More likely after period of inactivity

Surgical Treatment
- Must wear cast/brace for 6-8 weeks
- Toe-touch weight bearing
- Return to activity 4-6 months after surgery

Non-Surgical Treatment
- Higher risk of re-rupture within first 6 months
- Cast/Bracing for 12 weeks or more
- Return to activity 6 months or longer

Medial Tibial Stress Syndrome

- “Shin Splints”
- Most often occur early in training program
- Inflammation of tendon and fascia
- Disagreement over exact cause
Medial Tibial Stress Syndrome

- Pain anywhere along the leg
- Usually limited to muscular areas anteriorly
- Causes
 - Muscle inflexibility
 - Fallen arch
 - Pronated foot
 - Ill-fitting footwear
 - Training techniques
 - Playing surfaces

Medial Tibial Stress Syndrome

- Treatment
 - No one best treatment
 - R.I.C.E.
 - Correction of possible causes
 - Strengthening
 - Stretching
 - Taping
 - Slow return to activity
- Prevention
 - Gradual progression of training program
 - Properly fitted shoes
 - Identify over-pronation
 - Strengthening and flexibility program
 - Ankle ROM
 - Ankle strengthening
 - Weight bearing
 - Non-weight bearing

Shin Splints - Taping

- Arch Support
 - Helps raise arch
 - Corrects over-pronation
Shin Splints - Taping

- Tibial Taping
 - Eases symptoms
 - Provides extra support to inflamed fascia

Fractures

- Tibia and fibula both susceptible to fracture
- Fibula injured more often
 - Direct blow to outside of leg
 - Stress fractures
- Tibia fractures easily identified
 - Direct blow
 - Twisting force
 - Stress fractures

Stress Fractures

- Develop due to abnormal or unusual repetitive stress applied to the bone
- Difficult to differentiate shin splints vs. stress fracture
- More common in people with high arches
- Also more common with over-pronation
- Symptoms
 - Point tenderness
 - Swelling
 - Gradual onset
Stress Fractures

Bones Involved with Stress Fractures

- Tibia
- Fibula
- Metatarsals
- Femur
- Pelvis

Stress Fractures

- **Causes**
 - Change in shoes
 - Change in running surface
 - Change in distance
 - Changes in exercise program
 - Surgery on other side

- **Treatment**
 - Rest
 - Splinting vs. casting
 - Non-weight bearing vs. weight bearing
 - Gradual return to activity at 4-6 weeks

Traumatic Fractures

- To ER immediately
 - Severe local pain
 - Inability to bear weight
 - Deformity

- Apply ice and splint extremity in current position

- **DO NOT** try to straighten deformed leg
Nerve Injuries

• Causes
 – Nerve entrapment
 – Chronic stretch due to multiple ankle sprains
 – Nerve compression

• Symptoms
 – Pain
 – Foot drop
 – Numbness

• Treatment
 – Remove tight clothing/tape
 – Active/Passive Stretching
 – Refer to Physician
 – Resume activity as tolerated when cleared

Outcome Measures

• Hop Tests
 – Single Hop for Distance
 – Triple Hop for Distance
 – 6 meter Timed Hop

 • Performed Bilaterally
 – 3 practice reps
 – 5 measured/timed trials

Outcome Measures

• Star Excursion Battery
 – Measures balance and neuromuscular control
 – Hertel et al, Kinzey et al
 • Good reliability
Outcome Measures

- Star Excursion Battery
 - Performed bilaterally
 - 3 practice trials
 - 5 measured trials